OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
On the properties of orderings of extensional fuzzy numbers
Citace
Štěpnička, M., ŠKORUPOVÁ, N. a Holčapek, M. On the properties of orderings of extensional fuzzy numbers.
In:
IEEE Conference on Fuzzy Systems: 2020 IEEE International Conference on Fuzzy Systems 2020 Glasgow.
Glasgow: IEEE, 2020. s. 1-7. ISBN 978-1-7281-6932-3.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
7
Page from:
1
Page to:
7
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-6932-3
ISSN code:
1098-7584
Proceedings title:
2020 IEEE International Conference on Fuzzy Systems
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Glasgow
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE Conference on Fuzzy Systems
Místo konání konference:
Glasgow
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85090503227
Key words in English:
MI-algebras, extensional fuzzy numbers, similarity relation, extensionality, orderings, approximate reasoning
Annotation in original language:
The article stems from distinct studies on arithmetics of fuzzy numbers, orderings of fuzzy numbers, and metrics on fuzzy numbers. Trying to capture the existing knowledge in the mentioned areas and putting them together, we motivate the construction of metric-like spaces on fuzzy numbers by desirable connection to their arithmetics. The desirable "metric" should be mapping pairs of fuzzy numbers again to fuzzy numbers and thus, reflecting the vagueness of operation on fuzzy numbers. This leads to developing all such areas under the joint umbrella and connecting such basic notions as orderings of fuzzy numbers to arithmetics and elementary "metrics" such as the absolute value of the difference of two fuzzy numbers. This article focuses mainly on the orderings and investigation of the preservation of their most natural properties. However, links to further studies going towards applications are also foreshadowed and referred to.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21023N0
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules