OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra matematiky (31100)
Title:
From Classical Trajectories to Quantum Commutation Relations in Classical and Quantum Physics
Citace
Schiavone, L., Ciaglia, F. M. a Marmo, G. From Classical Trajectories to Quantum Commutation Relations in Classical and Quantum Physics.
In:
Classical and Quantum Physics 2018-03-05 Madrid.
Springer, Cham, 2019. s. 163-185. ISBN 978-3-030-24748-5.
Subtitle
Publication year:
2019
Obor:
Number of pages:
23
Page from:
163
Page to:
185
Form of publication:
Elektronická verze
ISBN code:
978-3-030-24748-5
ISSN code:
Proceedings title:
Classical and Quantum Physics
Proceedings:
Mezinárodní
Publisher name:
Springer, Cham
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Místo konání konference:
Madrid
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
dynamical system, Lagrangian, Hamiltonian
Annotation in original language:
In describing a dynamical system, the greatest part of the work for a theoretician is to translate experimental data into differential equations. It is desirable for such differential equations to admit a Lagrangian and/or an Hamiltonian description because of the Noether theorem and because they are the starting point for the quantization. As a matter of fact many ambiguities arise in each step of such a reconstruction which must be solved by the ingenuity of the theoretician. In the present work we describe geometric structures emerging in Lagrangian, Hamiltonian and Quantum description of a dynamical system underlining how many of them are not really fixed only by the trajectories observed by the experimentalist
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules