OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Unsupervised Object-aware Learning from Videos
Citace
Hůla, J. Unsupervised Object-aware Learning from Videos.
In:
IEEE Third International Conference Data Stream Mining & Processing 2020: Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020 2020-09-21 Lvov.
IEEE, 2020. s. 237-242. ISBN 978-172813214-3.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
6
Page from:
237
Page to:
242
Form of publication:
Tištená verze
ISBN code:
978-172813214-3
ISSN code:
Proceedings title:
Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Neuveden
Country of Publication:
Název konference:
IEEE Third International Conference Data Stream Mining & Processing 2020
Místo konání konference:
Lvov
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85093685668
Key words in English:
Clustering; Community Detection; Computer Vision; Unsupervised Learning
Annotation in original language:
We consider a novel unsupervised learning setup in which training examples are grouped into small bundles that preserve an identity of an object. Such setup may practically arise when we are able to detect moving objects in videos without being able to classify their identity. Our approach is based on a construction of a similarity graph of bundles from which we are able to recover the identities of objects by applying a community detection algorithm. Finally, we train Siamese Neural Network to discriminate examples from different components and show that thus acquired representations produce well-separated clusters. Part of our contribution is also a unique dataset we assembled in order to test the presented idea.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21022P0
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules