OU Portal
  • Log In
  • Welcome
  • Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
{}

Pomocí tohoto dialogu můžete vyhledat domácí autory, čili autory, kteří jsou vedeni v personálních systémech Ostravské univerzity.

Do našeptávače níže napište hledaný text a tento text bude vyhledán ve jméně nebo příjmení autora. Autoři, kteří budou hledanému textu odpovídat, Vám budou nabídnuti v seznamu. Pomocí myši nebo šipek na klávesnici vyberte požadovaného autora.

Našeptávač : 
Přidat autora k záznamu Zavřít

Pomocí tohoto dialogu můžete k záznamu přidat cizího autora, čili autora, který nemá žádný pracovní ani studijní vztah k Ostravské univerzitě. Takto přidaný autor bude do RIV vykázán jako nedomácí.

Pro přidání autora vepište jeho jméno a příjmení do určených položek.

Jméno :
Příjmení :
Přidat k záznamu Zavřít
Zavřít

Pomocí tohoto dialogu můžete k záznamu nahrát soubor PDF. Tento soubor musí obsahovat text tohoto záznamu (text článku, knihy, atd.). Tento soubor je důležitý pro RIV, protože může být použit jako důkaz existence tohoto záznamu.

Pro nahrání souboru klikněte na tlačítko Browse a vyberte soubor, který chcete nahrát. Nahrávání souboru zahájíte tlačítkem Nahrát soubor.

Maximální velikost souboru PDF je omezena na 100 MB.

Soubor : 

Nahrát soubor
Zavřít

Pomocí tohoto dialogu můžete stáhnout PDF soubor přiřazený tomuto záznamu. Pro stažení souboru klikněte níže na název tohoto souboru a bude Vám nabídnuta možnost soubor uložit.

Věnujte prosím pozornost také velikosti PDF souboru. Velké soubory se mohou stahovat delší dobu, pokud máte pomalé internetové připojení.

Název souboru :
Velikost souboru :
Zavřít
Publikační činnost


preloading...   Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu * : článek v odborném periodiku (J)
Domácí pracoviště * : Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název * : Dragonflies segmentation with U-Net based on cascaded ResNeXt cells
Citace : Hurtík, P. a Ožana, S. Dragonflies segmentation with U-Net based on cascaded ResNeXt cells. NEURAL COMPUT APPL. 2020, č. 2020, s. 1-12. ISSN 0941-0643.
Podnázev :
Rok * : 2020
Obor * : Obecná matematika
Kód ISSN * : 0941-0643
Oficiální název periodika * : NEURAL COMPUT APPL
Stát vydavatele periodika * : Spojené království Velké Británie a Severního Irska
Svazek periodika * : Neuveden
Číslo periodika v rámci svazku * : 2020
Číslo článku :
Ročník :
Počet stran článku * : 12
Strana od * : 1
Strana do * : 12
Kód UT WoS : 000558608100003
EID : 2-s2.0-85089291893
Poddruh recenzovaného článku : Článek v impaktovaném časopise (Jimp)
Klíčová slova anglicky * :
U-Net, Neural Network, Dragonfly, Residual network
Popis v původním jazyce * :
In cooperation with biologists, we discuss the problem of animal species protection with the usage of modern technologies, namely mobile phones. In our work, we consider the problem of dragonfly image classification, where the aim is given to a preprocessing—segmentation of a dragonfly body from a background. To solve the task, we improve U-Net architecture by ResNeXt cells firstly. Further, we focus on the reasonability of features in neural networks with cardinality dimension and propose the cascaded way of re-using the features among blocks in particular cardinal dimensions. The reuse of the already trained features leads to composing more robust features and more efficient usage of neural network parameters. We test our cascaded cells together with three various U-Net versions for four different settings of hyperparameters with the conclusion that the system of cascaded features leads to higher accuracy than the other versions with the same number of parameters. Also, the cascaded cells are more robust to overfitting the dataset. The obtained results are confirmed on two additional public datasets.
Popis v anglickém jazyce * :
Typ zdroje financování výsledku * : Specifický výzkum
Seznam projektů :
ID Projektu Název projektu
Seznam ohlasů : 
Ohlas
R01: RIV/61988987:17610/20:A21021UE

© 2019 Centre for Information Technology

  • Technická podpora :
  • Mgr. Olga Blahutová (phone: +420 597 091 129, phone flap for UO: 1129)
  • Ing. Lucie Svitaneková (phone: +420 597 091 108, phone flap for UO: 1108)
Complementary Content
  • ${title}${badge}
${loading}