OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
YOLO-ASC: You Only Look Once And See Contours
Citace
Hurtík, P., Molek, V. a Vlašánek, P. YOLO-ASC: You Only Look Once And See Contours.
In:
IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE (WCCI) 2020: 2020 International Joint Conference on Neural Networks (IJCNN) 2020-07-19 Glasgow , United Kingdom.
USA: IEEE, 2020. s. 1-7. ISBN 978-1-7281-6926-2.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
7
Page from:
1
Page to:
7
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-6926-2
ISSN code:
Proceedings title:
2020 International Joint Conference on Neural Networks (IJCNN)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
USA
Country of Publication:
Název konference:
IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE (WCCI) 2020
Místo konání konference:
Glasgow , United Kingdom
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85093836005
Key words in English:
YOLO, object detection, object mask
Annotation in original language:
YOLO is a useful, one-stage tool for object detection and classification. In this paper, we consider the application of grocery product detection. The grocery stores have a significant amount of product classes, so it is beneficial to postpone the classification into a second, specialized neural network with a higher capacity. Extracting bounding boxes for a classification network is not precise enough as the detected area includes redundant information about the background. We propose YOLO-ASC, which, for rectangular-based objects, detects bounding boxes together with object contour using a quadrangular. This approach allows detecting objects more accurately and without the background. For the quadrangular detection functionality, YOLO-ASC shares the feature maps that are already present in the network, and therefore its inference time is almost identical to the original YOLO. YOLO reaches high detection precision by using YOLO apriori knowledge, anchors extracted from data. In this work, we present two experiments where we demonstrate that YOLO-ASC training converges faster due to the symbiosis between the bounding box detection and quadrangular detection. Finally, we propose a tool for generating synthetic datasets with quadrangular labels that is helpful for transfer learning.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21021UC
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules