OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
An Evaluative Study of Adaptive Control of Population Size in Differential Evolution
Citace
Bujok, P. An Evaluative Study of Adaptive Control of Population Size in Differential Evolution.
In:
18th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2019): Lecture Notes in Artificial Intelligence 11508 2019-06-16 Zakopane, Polsko.
Cham, Switzerland: Springer, 2019. s. 421-431. ISBN 978-3-030-20911-7.
Subtitle
Publication year:
2019
Obor:
Informatika
Number of pages:
11
Page from:
421
Page to:
431
Form of publication:
Elektronická verze
ISBN code:
978-3-030-20911-7
ISSN code:
0302-9743
Proceedings title:
Lecture Notes in Artificial Intelligence 11508
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham, Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
18th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2019)
Místo konání konference:
Zakopane, Polsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85066763894
Key words in English:
Differential evolution, Population diversity,Acceptable interval, Experimental comparison, Real-world problems
Annotation in original language:
In this paper, a newly proposed setting of a diversity-based adaptive mechanism of population size setting in differential evolution (DE) is experimentally studied. Seven state-of-the-art adaptive DE variants and classic DE are used in the experiments where 22 real-world problems are solved. The obtained results are assessed by statistical tests. The diversity-based approach often performs substantially better compared with the original fixed population size setting or linearly decreasing population size. A newly proposed setting of the control parameter performs at least the same or better than the original setting.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/19:A2002001
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules