OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Cooperative Model of Evolutionary Algorithms Applied to CEC 2019 Single Objective Numerical Optimization
Citace
Bujok, P. a Zamuda, A. Cooperative Model of Evolutionary Algorithms Applied to CEC 2019 Single Objective Numerical Optimization.
In:
2019 IEEE Congress on Evolutionary Computation: 2019 IEEE Congress on Evolutionary Computation (CEC) 2019-06-10 New Zealand.
Piscataway, NJ, USA: IEEE, 2019. s. 358-363. ISBN 978-1-7281-2153-6.
Subtitle
Publication year:
2019
Obor:
Informatika
Number of pages:
6
Page from:
358
Page to:
363
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-2153-6
ISSN code:
Proceedings title:
2019 IEEE Congress on Evolutionary Computation (CEC)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Piscataway, NJ, USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2019 IEEE Congress on Evolutionary Computation
Conference venue:
New Zealand
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000502087100049
EID:
2-s2.0-85071291198
Key words in English:
Differential Evolution, Evolution Strategy, cooperative model, competition, experiments, global optimization
Annotation in original language:
A cooperative model of well-known evolutionaryalgorithms is proposed and tested on CEC 2019 benchmark suite. The four adaptive algorithms are chosen for this model, namely Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) and three variants of adaptive Differential Evolution. Although the three algorithms use constant population size, the proposed model employs an efficient linear population size reduction mechanism. The provided results show that theCooperative Model of Evolutionary Algorithms (CMEAL) is able to solve seven out of ten optimization problems.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/19:A2001ZZZ
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules