OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Universal preprocessing for Neural Networks given by Image Represented by a Fuzzy Function
Citace
Hurtík, P., Molek, V. a HŮLA, J. Universal preprocessing for Neural Networks given by Image Represented by a Fuzzy Function.
In:
The 11th Conference of the European Society for Fuzzy Logic and Technology organized jointly with the IQSA Workshop on Quantum Structures: Book of Abstracts of the 11th Conference of the European Society for Fuzzy Logic and Technology 2019-09-09 Praha.
Ostrava: University of Ostrava, 2019. s. 54-54. ISBN 978-80-7599-110-2.
Podnázev
Rok vydání:
2019
Obor:
Informatika
Počet stran:
1
Strana od:
54
Strana do:
54
Forma vydání:
Tištená verze
Kód ISBN:
978-80-7599-110-2
Kód ISSN:
Název sborníku:
Book of Abstracts of the 11th Conference of the European Society for Fuzzy Logic and Technology
Sborník:
Mezinárodní
Název nakladatele:
University of Ostrava
Místo vydání:
Ostrava
Stát vydání:
Sborník vydaný v ČR
Název konference:
The 11th Conference of the European Society for Fuzzy Logic and Technology organized jointly with the IQSA Workshop on Quantum Structures
Místo konání konference:
Praha
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celostátní akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
Popis v původním jazyce:
Considering the image processing field, neural networks in all of their forms have become state-of-the-art due to their universality and ability to discover semantic features of images. On the other hand, their long training times and non-interpretability of results have been neglected over the years. Moreover, neural networks are still limited by the requirement of a reasonably big dataset. In our work, we are focusing on the problem of extending a dataset. This is done by enriching the original data by adding new information, which cannot be extracted by the network itself. The enriching is based on substituting a standard image representation by a new one, called Image Represented by a Fuzzy Function, which replaces original crisp values of pixel intensities by a fuzzy sets given by their triangular membership function. The membership function for a certain pixel is established from intensities of the spatial neighborhood of the given pixel, which is motivated by the center-surrounding mechanism and by modeling the absolute intensity contrast, used for handling visual saliency. Based on the benchmarks, we show that such new representation can increase the accuracy of the network by providing, otherwise unavailable, information. The another added value is that the new representation is realized as a preprocessing and does not require a modification of neural network architecture and so can be easily integrated into existing networks.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules