OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy preprocessing for semi-supervised image classification in modern industry
Citace
Hurtík, P. a Molek, V. Fuzzy preprocessing for semi-supervised image classification in modern industry.
In:
15th International Work-Conference on Artificial Neural Networks 2019-06-12 Gran Canaria.
Cham: Springer, 2019. s. 3-13. ISBN 978-3-030-20517-1.
Subtitle
Publication year:
2019
Obor:
Obecná matematika
Number of pages:
11
Page from:
3
Page to:
13
Form of publication:
Tištená verze
ISBN code:
978-3-030-20517-1
ISSN code:
0302-9743
Proceedings title:
15th International Work-Conference on Artificial Neural Networks
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Conference venue:
Gran Canaria
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Unsupervised learning, Image classification, Image Represented by a Fuzzy Function, IRFF, Autoencoder
Annotation in original language:
We are focusing on image classification in industrial processing taking into account the most problematic issue of the processing: the lack of labeled data. Here, we are considering three datasets: the first one is an unsorted collection of all types of manufactured products and includes 100 images per class. The second one consists of products sorted into particular classes by a specialized employee and includes only ten images per class. The last one includes a massive volume of labeled images, but it is used only for the proposal validation. As the configuration is challenging for neural networks, we propose to use Image Represented by a Fuzzy Function in order to enrich original image information. We solve the task using various autoencoder architectures and prove that such the proposal increases the autoencoders success rate.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/19:A2001ZSQ
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules