OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Propagation of Uncertainty Expressed in Intervals on the Confidence of Fuzzy Association Rules
Citace
Burda, M. a Pavliska, V. Propagation of Uncertainty Expressed in Intervals on the Confidence of Fuzzy Association Rules.
In:
The 5th International Conference on Fuzzy Systems and Data Mining: Fuzzy Systems and Data Mining V 2019-10-18 Kitakyushu.
IOS Press, 2019. s. 205-211. ISBN 978-1-64368-018-7.
Subtitle
Publication year:
2019
Obor:
Obecná matematika
Number of pages:
7
Page from:
205
Page to:
211
Form of publication:
Elektronická verze
ISBN code:
978-1-64368-018-7
ISSN code:
Proceedings title:
Fuzzy Systems and Data Mining V
Proceedings:
Publisher name:
IOS Press
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
The 5th International Conference on Fuzzy Systems and Data Mining
Místo konání konference:
Kitakyushu
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
association rules, interval-valued fuzzy sets, confidence
Annotation in original language:
Association analysis searches data for potentially useful patterns in the form of rules. The aim of this paper is to analyze thoroughly the influence of im-precision or uncertainty in data on the uncertainty of the rule’s quality measure, which is called the confidence. An experiment is conducted that allows to analyze the amount of uncertainty propagated from data to the resulting rule’s confidence. For that, artificial data are generated with various characteristics and uncertainty settings. Results of the experiment show the dependency of the amount of uncertainty in a rule’s confidence on the rate, type and position of uncertainty in data. Also, the effect of a t-norm selected in the definition of confidence is evaluated.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/19:A2001Z54
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules