OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Generalized Fuzzy Partition in Galerkin Method for the Boundary Valued Problem
Citace
Nguyen, L. T. N. L., Perfiljeva, I. a Holčapek, M. Generalized Fuzzy Partition in Galerkin Method for the Boundary Valued Problem.
In:
FUZZ-IEEE 2019: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2019-06-23 New Orleans, USA.
Piscataway: IEEE, 2019. s. 1-6. ISBN 978-1-5386-1728-1.
Subtitle
Publication year:
2019
Obor:
Obecná matematika
Number of pages:
6
Page from:
1
Page to:
6
Form of publication:
Elektronická verze
ISBN code:
978-1-5386-1728-1
ISSN code:
Proceedings title:
2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Piscataway
Country of Publication:
Název konference:
FUZZ-IEEE 2019
Místo konání konference:
New Orleans, USA
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85073804137
Key words in English:
Boundary valued problem, Galerkin method, numerical method, fuzzy partition, approximation
Annotation in original language:
This paper introduces a novel construction of test spaces in the Ritz-Galerkin method. These spaces are established on the basis of linear spaces of functions that are linear combination of polynomials and fuzzy sets of a generalized uniform fuzzy partition.
Annotation in english language:
This paper introduces a novel construction of test spaces in the Ritz-Galerkin method. These spaces are established on the basis of linear spaces of functions that are linear combination of polynomials and fuzzy sets of a generalized uniform fuzzy partition.
References
Reference
R01:
RIV/61988987:17610/19:A2001YE6
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules