OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Clustering of Incomplete Data by Means of Similarity Measures
Citace
Hu, Z., Bodyanskiy, Y., Tyshchenko, O. a Shafronenko, A. Fuzzy Clustering of Incomplete Data by Means of Similarity Measures.
In:
IEEE UKRCON-2019: Proceedings of 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) 2019-07-02 Lvov, Ukrajina.
Lvov, Ukrajina: Institute of Electrical and Electronics Engineers Inc., 2019. s. 957-960. ISBN 978-1-7281-3882-4.
Subtitle
Publication year:
2019
Obor:
Obecná matematika
Number of pages:
4
Page from:
957
Page to:
960
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-3882-4
ISSN code:
Proceedings title:
Proceedings of 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON)
Proceedings:
Mezinárodní
Publisher name:
Institute of Electrical and Electronics Engineers Inc.
Place of publishing:
Lvov, Ukrajina
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE UKRCON-2019
Místo konání konference:
Lvov, Ukrajina
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85074956680
Key words in English:
Computational Intelligence; fuzzy clustering; similarity measure; incomplete data; missing value; learning method
Annotation in original language:
The current standing in the scope of Data Mining considers clustering to be one of the most useful and widely used tools. Multiple real-world datasets usually contain drops/gaps in the data due to various reasons. The currently known approaches are highly efficient only in those cases when original datasets do not change their volumes during the analysis. However, current problems mostly deal with sequential online data processing. On the other hand, there is no prior knowledge on which feature vectors contain overlooks. In this manuscript, the challenge of possibilistic and probabilistic online clustering approaches for processing incomplete data is solved through similarity measures of a specific kind which are capable of either loosening outliers’ influence or repressing them.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/19:A2001Y37
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules