OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Introducing Subtypes in Fuzzy Type Theory
Citace
Novák, V. Introducing Subtypes in Fuzzy Type Theory.
In:
19th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty: Proceedings of the 19th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2016-10-05 Matsumoto, Nagano.
Matsumoto, Nagano: Matsumoto University, 2016. s. 42-51.
Subtitle
Publication year:
2016
Obor:
Obecná matematika
Number of pages:
10
Page from:
42
Page to:
51
Form of publication:
Tištená verze
ISBN code:
ISSN code:
Proceedings title:
Proceedings of the 19th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Proceedings:
Mezinárodní
Publisher name:
Matsumoto University
Place of publishing:
Matsumoto, Nagano
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
19th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Místo konání konference:
Matsumoto, Nagano
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy type theory, EQ-algebra, types and subtypes, lambda-calculus with subtypes
Annotation in original language:
Fuzzy type theory (FTT) is a higher-order fuzzy logic that generalizes classical type theory (TT). Recall that the latter was established over 100 years ago by B. Russel. Its formalism was later well elaborated by A. Church and L. Henkin. In this theory, each formula A of the type is interpreted by some function M -> M. It was proved that FTT is complete w.r.t. general models, i.e., we may consider in them also sets M\subset M^M . In some applications it is necessary to express syntactically also functions on M' where M' is a subset of M. The solution (known also in TT) is to introduce the, so called, subtypes. If a type is a subtype then M' is a subset of M. In this paper we elaborate a new kind of fuzzy type theory extended by subtypes and prove completeness of it. This theory also opens the door to introduction of FTT with partial functions on all levels.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules