OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
The F-transform Plus PCA Dimensionality Reduction with Application to Pattern Recognition in Large Databases
Citace
Perfiljeva, I. a Hurtík, P. The F-transform Plus PCA Dimensionality Reduction with Application to Pattern Recognition in Large Databases.
In:
2018 IEEE Symposium Series on Computational Intelligence: 2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018) 2018-11-18 Bengaluru.
Bengaluru: IEEE publishing services, 2018. s. 1020-1026. ISBN 978-1-5386-9275-2.
Subtitle
Publication year:
2018
Obor:
Obecná matematika
Number of pages:
7
Page from:
1020
Page to:
1026
Form of publication:
Elektronická verze
ISBN code:
978-1-5386-9275-2
ISSN code:
Proceedings title:
2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018)
Proceedings:
Mezinárodní
Publisher name:
IEEE publishing services
Place of publishing:
Bengaluru
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2018 IEEE Symposium Series on Computational Intelligence
Místo konání konference:
Bengaluru
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000459238800138
EID:
Key words in English:
F-transform, dimensionality reduction, Laplacianeigenmaps, fuzzy partition, PCA, pattern recognition
Annotation in original language:
Two distinguished properties of the F-transform:the best approximation in a local sense and the reductionin dimension imply the fact that the F-transform has manysuccessful applications. In the first part, we propose another wayof computing the F-transform components of a functional data.This way is based on the particular dimensionality reductionalgorithm named Laplacian eigenmaps. In the second part,we strengthen the effect of F-transform-based dimensionalityreduction by applying the PCA reduction method over theF0- or F1- transform results. We demonstrate the efficiency ofthe proposed combinations F0zT+PCA and F1zT+PCA on theproblem of patter recognition in a large database. We compareboth combinations with other relevant techniques (besides other,LENET-like CNN) and show that they outperform them fromthe computation time and success rate points of view.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A1901X6O
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules