OU Portal
  • Log In
  • Welcome
  • Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
{}

Pomocí tohoto dialogu můžete vyhledat domácí autory, čili autory, kteří jsou vedeni v personálních systémech Ostravské univerzity.

Do našeptávače níže napište hledaný text a tento text bude vyhledán ve jméně nebo příjmení autora. Autoři, kteří budou hledanému textu odpovídat, Vám budou nabídnuti v seznamu. Pomocí myši nebo šipek na klávesnici vyberte požadovaného autora.

Našeptávač : 
Přidat autora k záznamu Zavřít

Pomocí tohoto dialogu můžete k záznamu přidat cizího autora, čili autora, který nemá žádný pracovní ani studijní vztah k Ostravské univerzitě. Takto přidaný autor bude do RIV vykázán jako nedomácí.

Pro přidání autora vepište jeho jméno a příjmení do určených položek.

Jméno :
Příjmení :
Přidat k záznamu Zavřít
Zavřít

Pomocí tohoto dialogu můžete k záznamu nahrát soubor PDF. Tento soubor musí obsahovat text tohoto záznamu (text článku, knihy, atd.). Tento soubor je důležitý pro RIV, protože může být použit jako důkaz existence tohoto záznamu.

Pro nahrání souboru klikněte na tlačítko Browse a vyberte soubor, který chcete nahrát. Nahrávání souboru zahájíte tlačítkem Nahrát soubor.

Maximální velikost souboru PDF je omezena na 100 MB.

Soubor : 

Nahrát soubor
Zavřít

Pomocí tohoto dialogu můžete stáhnout PDF soubor přiřazený tomuto záznamu. Pro stažení souboru klikněte níže na název tohoto souboru a bude Vám nabídnuta možnost soubor uložit.

Věnujte prosím pozornost také velikosti PDF souboru. Velké soubory se mohou stahovat delší dobu, pokud máte pomalé internetové připojení.

Název souboru :
Velikost souboru :
Zavřít
Publikační činnost


preloading...   Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu * : článek v odborném periodiku (J)
Domácí pracoviště * : Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název * : Novel dimensionality reduction approach for unsupervised learning on small datasets
Citace : Hurtík, P., Molek, V. a Perfiljeva, I. Novel dimensionality reduction approach for unsupervised learning on small datasets. PATTERN RECOGN. 2020, 103(červenec), ISSN 0031-3203.
Podnázev :
Rok * : 2020
Obor * : Aplikovaná statistika, operační výzkum
Kód ISSN * : 0031-3203
Oficiální název periodika * : PATTERN RECOGN
Stát vydavatele periodika * : Nizozemsko
Svazek periodika * : 103
Číslo periodika v rámci svazku * : červenec
Číslo článku : 107291
Ročník :
Počet stran článku * : 9
Strana od * : neuvedeno
Strana do * : neuvedeno
Kód UT WoS : 000530845000026
EID : 2-s2.0-85080061950
Poddruh recenzovaného článku : Článek v impaktovaném časopise (Jimp)
Klíčová slova anglicky * :
Unsupervised learning; Dimensionality reduction; PCA; F-transform; Image classification; Autoencoder
Popis v původním jazyce * :
We focus on an image classification task in which only several unlabeled images per class are available for learning and low computational complexity is required. We recall the state-of-the-art methods that are used to solve the task: autoencoder-based approaches and manifold-decomposition-based approaches. Next, we introduce our proposed method, which is based on a combination of the F-transform and (kernel) principal component analysis. F-transform significantly reduces the computation time of PCA and increases the robustness of PCA to translation, while PCA proposes more descriptive features. This combination performs 3D reduction: the F-transform reduces dimensionality over a single 2D image, while PCA reduces dimensionality through the whole set of processed images. Based on the benchmark results, our method may outperform deep-learning-based methods in limited settings. For completeness, we also address other image resampling algorithms that can be used instead of the F-transform, and we find that the F-transform is the most suitable.
Popis v anglickém jazyce * :
Typ zdroje financování výsledku * : Specifický výzkum
Seznam projektů :
ID Projektu Název projektu
Seznam ohlasů : 
Ohlas
R01: RIV/61988987:17610/20:A2101WLX

© 2019 Centre for Information Technology

  • Technická podpora :
  • Mgr. Olga Blahutová (phone: +420 597 091 129, phone flap for UO: 1129)
  • Ing. Lucie Svitaneková (phone: +420 597 091 108, phone flap for UO: 1108)
Complementary Content
  • ${title}${badge}
${loading}