OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Synthetic dataset for compositional learning
Citace
Molek, V. a HŮLA, J. Synthetic dataset for compositional learning.
In:
FLINS 2018: Data Science and Knowledge Engineering for Sensing Decision Support 2018-08-21 Belfast.
Singapur: World Scientific, 2018. s. 1440-1445. ISBN 9789813273221.
Subtitle
Publication year:
2018
Obor:
Informatika
Number of pages:
6
Page from:
1440
Page to:
1445
Form of publication:
Tištená verze
ISBN code:
9789813273221
ISSN code:
Proceedings title:
Data Science and Knowledge Engineering for Sensing Decision Support
Proceedings:
Mezinárodní
Publisher name:
World Scientific
Place of publishing:
Singapur
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
FLINS 2018
Místo konání konference:
Belfast
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
dataset, synthetic data, unreal engine, Compositional Learning
Annotation in original language:
This contribution presents a framework for a generation of synthetic images. The framework is built on top of the Unreal Engine 4, a software kit capable of rendering realistic images. Besides image data, additional label information, such as depth, normal maps and object components masks, are generated. Hierarchical nature of generated labels corresponds to hierarchical representations which we want to be captured by the neural network. Such labels enable training of deep models in a compositional manner. This leads to the better understanding of the internal representations of the models and acceleration of the learning procedure. The framework allows users to render arbitrary scenes and objects according to their specific domain.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A1901VAS
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules