OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra matematiky (31100)
Title:
Topological MI-groups
Citace
ŠKORUPOVÁ, N. a Holčapek, M. Topological MI-groups.
In:
ISCAMI 2018: Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics 2018-05-10 Malenovice.
Ostrava: University of Ostrava, 2018. s. 33-33. ISBN 9788074641121.
Subtitle
Publication year:
2018
Obor:
Obecná matematika
Number of pages:
1
Page from:
33
Page to:
33
Form of publication:
Tištená verze
ISBN code:
9788074641121
ISSN code:
Proceedings title:
Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics
Proceedings:
Mezinárodní
Publisher name:
University of Ostrava
Place of publishing:
Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
ISCAMI 2018
Místo konání konference:
Malenovice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
MI-group, topological MI-group
Annotation in original language:
This contribution deals with the generalization of groups and topological groups. The MI-group (many identities group) structure, which naturally generalizes the group structure, is enriched by a topology and the respective binary operation and inversion are continuous. The aim of this contribution is to introduce the term of topological MI-group, introduce the basic properties and demonstrate them on examples. To be able to study topological MI-groups, first, we need to introduce MI-groups as a generalization of groups. There are defined terms of a product of MI-groups and quotient MI-subgroups. The main part of this contribution shows a basic definition of topological MI-groups and this concept is demonstrated on examples. There is also shown the existence of product and quotient topological MI-groups.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/18:A1901UHB
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules