OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra informačních a komunikačních technologií (45080)
Název:
Capsule Neural Networks in computer vision
Citace
Číž, D. Capsule Neural Networks in computer vision.
In:
Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics 2018-05-10 Malenovice.
Ostrava: University of Ostrava, 2018. s. 29-29. ISBN 978-80-7464-112-1.
Podnázev
Rok vydání:
2018
Obor:
Počet stran:
1
Strana od:
29
Strana do:
29
Forma vydání:
Tištená verze
Kód ISBN:
978-80-7464-112-1
Kód ISSN:
Název sborníku:
Proceedings of the 19th International Student Conference on Applied Mathematics and Informatics
Sborník:
Název nakladatele:
University of Ostrava
Místo vydání:
Ostrava
Stát vydání:
Název konference:
Místo konání konference:
Malenovice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
Artificial Neural Networks, Capsule Neural Networks
Popis v původním jazyce:
Convolutional Neural Networks have achieved much success in the recent years by demonstrating great results. On the other hand, there are inherent limitations, because these architectures do not take into an account pose of an entity, meaning that an object with different viewing angles is not being recognized as the same entity. Also, the relative positions of features are not being utilized. Capsule Neural Networks, recently made by Geoffrey Hinton and his collaborators are especially designed with this problem in mind. By grouping neurons in layers into capsules, we can create vectors containing information about poses. By using information about relations between capsules, we can create higher-level features which are invariant to rotation. This results in better generalization to unseen poses and decreases the required size of training datasets. In our work, we focus on applying this technique to standard image datasets and comparing the results with other approaches. We also test the benefits and shortcomings of Capsule Neural Networks.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules