OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Migration Model of Adaptive Differential Evolution Applied to Real-World Problems
Citace
Bujok, P. Migration Model of Adaptive Differential Evolution Applied to Real-World Problems.
In:
17th International Conference on Artificial Intelligence and Soft Computing: LNCS 10841 Artificial Intelligence and Soft Computing - Part I 2018-06-03 Zakopane, Polsko.
Switzerland: Springer, 2018. s. 313-322. ISBN 978-3-319-91252-3.
Subtitle
Publication year:
2018
Obor:
Informatika
Number of pages:
10
Page from:
313
Page to:
322
Form of publication:
Paměťový nosič
ISBN code:
978-3-319-91252-3
ISSN code:
0302-9743
Proceedings title:
LNCS 10841 Artificial Intelligence and Soft Computing - Part I
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
17th International Conference on Artificial Intelligence and Soft Computing
Místo konání konference:
Zakopane, Polsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Differential evolution;Migration model;Migration frequency;Sub-population size;Experimental study;Real-world problems
Annotation in original language:
Ten variants of migration model are compared with six adaptive differential evolution (DE) algorithms on real-world problems. Two parameters of migration model are studied experimentally. The results ofexperiments demonstrate the superiority of the migration models in first stages of the search process. A success of adaptive DE algorithms employed by migration model is systematically influenced by the studied parameters. The most efficient algorithm in the comparison is proposed migration model P15x50. The worst performing algorithm is adaptive DE.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/18:A1901U32
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules