OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy transform and support vector machine for pedestrian detection
Citace
Vlašánek, P. a Stuchlík, L. Fuzzy transform and support vector machine for pedestrian detection.
In:
ICIEV: 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) 2018-06-25 Kitakyushu, Japonsko.
IEEE, 2018. s. 344-348. ISBN 978-1-5386-5163-6.
Subtitle
Publication year:
2018
Obor:
Obecná matematika
Number of pages:
5
Page from:
344
Page to:
348
Form of publication:
Elektronická verze
ISBN code:
978-1-5386-5163-6
ISSN code:
Proceedings title:
2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
ICIEV
Místo konání konference:
Kitakyushu, Japonsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000462610300060
EID:
2-s2.0-85063194316
Key words in English:
F-transform;image processing;pedestrian detection;svm
Annotation in original language:
This paper focuses on a task of automatic pedestrian detection. There are many possible solutions with several ideas behind. Histogram of oriented gradients is among the popular ones. The former is used as a descriptor of the input image together with support vector machine. In this initial study, we propose to create a feature vector using fuzzy mathematics and test its effectiveness. The effectiveness is evaluated by comparison with original histogram of oriented gradient descriptors in support vector machine.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A2001TSW
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules