OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy relational compositions can be used for customers credit scoring in financial industry
Citace
Mirshahi, S. a Cao, T. H. N. Fuzzy relational compositions can be used for customers credit scoring in financial industry.
In:
IPMU 2018: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications 2018 Cádiz.
Heidelberg: Springer, 2018. s. 28-39. ISBN 978-3-319-91478-7.
Subtitle
Publication year:
2018
Obor:
Obecná matematika
Number of pages:
12
Page from:
28
Page to:
39
Form of publication:
Tištená verze
ISBN code:
978-3-319-91478-7
ISSN code:
1865-0929
Proceedings title:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IPMU 2018
Místo konání konference:
Cádiz
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85048045299
Key words in English:
fuzzy relational compositions, Bandler-Kohout products, excluding features, generalized quantifiers, credit assessment, credit scoring, credit evaluation
Annotation in original language:
We show that fuzzy relational compositions assist in evaluating customers creditability (credit scoring) which is one of the most important problems in the financial industry. The purpose is to classify a given customer into two classes of accepted or rejected and to help loan officers to make a better decision. We illustrate an experimental example with initial values provided by a bank expert and use LFL R-package as the practical tool to calculate the compositions for our application. The concept of so-called generalized quantifiers and excluding features incorporating in the compositions will be employed as well.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A1901SZF
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules