OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Extension principle for category of fuzzy sets over MV-algebras
Citace
Močkoř, J. Extension principle for category of fuzzy sets over MV-algebras.
In:
Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty: Proceedings of Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2002-09-10 Mt. Koyasan, Japonsko.
Koyasaqn: University of Osaka, 2002. University of Osaka, 2002. s. 160-166. ISBN 1111-1111.
Subtitle
Publication year:
2002
Obor:
Obecná matematika
Number of pages:
6
Page from:
160
Page to:
166
Form of publication:
ISBN code:
1111-1111
ISSN code:
Proceedings title:
Proceedings of Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Proceedings:
Mezinárodní
Publisher name:
University of Osaka
Place of publishing:
Koyasaqn
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Místo konání konference:
Mt. Koyasan, Japonsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Zadeh extension principle, fuzzy sets
Annotation in original language:
Zadeh extension principle is defined in some categories of fuzzy sets or categories of sets with equality relations.
Annotation in english language:
Zadeh extension principle is defined in some categories of fuzzy sets or categories of sets with equality relations.
References
Reference
R01:
RIV/61988987:17310/02:00000024
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules