OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Linguistic Characterization of Natural Data by Applying Intermediate Quantifiers on Fuzzy Association Rules
Citace
Murinová, P. a Burda, M. Linguistic Characterization of Natural Data by Applying Intermediate Quantifiers on Fuzzy Association Rules.
In:
Pardubice, Czech Republic September 17?20, 2017 Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2017-09-17 Pardubice.
University of Ostrava: University of Ostrava, 2017. s. 115-126. ISBN 78-80-7464-932-5.
Subtitle
Publication year:
2017
Obor:
Obecná matematika
Number of pages:
12
Page from:
115
Page to:
126
Form of publication:
Tištená verze
ISBN code:
978-80-7464-932-5
ISSN code:
Proceedings title:
Pardubice, Czech Republic September 17?20, 2017 Proceedings of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Proceedings:
Publisher name:
University of Ostrava
Place of publishing:
University of Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
Místo konání konference:
Pardubice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000418391500014
EID:
Key words in English:
Fuzzy natural logic, Linguistic associations mining, Intermediate quantifiers, Generalized syllogisms, Fuzzy GUHA
Annotation in original language:
The objective of this paper is to apply fuzzy natural logic together with the FuzzyGUHA method for analysis and linguistic characterization of scientfic data. FuzzyGUHA is a tool for extracting linguistic association rules from data. Obtained associationsare IF-THEN rules composed of evaluative linguistic expressions, which allowthe quantities to be characterized with vague linguistic terms such as very small,big, medium etc. Originally, fuzzy GUHA provides several numerical indices ofrule quality, which may not be easily understandable for domain experts that are notfamiliar with GUHA association rules. Therefore, we show in this paper that the theoryof intermediate quantfiers (a constituent of fuzzy natural logic) can be applied to theresults in an automatic manner in order to obtain natural linguistic summarization.We also present an idea of how the theory of generalized Aristotles's syllogisms can beused for a detailed data analysis
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/17:A1801RAV
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules