OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Guaranteed Training Set for Associative Networks
Citace
Volná, E. a Kotyrba, M. Guaranteed Training Set for Associative Networks.
In:
22nd International Conference on Soft Computing (Mendel 2016): Advances in Intelligent Systems and Computing 2016-06-08 Brno.
Cham, Switzerland: Springer Verlag, 2017. s. 136-146. ISBN 978-331958087-6.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
11
Page from:
136
Page to:
146
Form of publication:
Tištená verze
ISBN code:
978-331958087-6
ISSN code:
2194-5357
Proceedings title:
Advances in Intelligent Systems and Computing
Proceedings:
Mezinárodní
Publisher name:
Springer Verlag
Place of publishing:
Cham, Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
22nd International Conference on Soft Computing (Mendel 2016)
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
-
EID:
2-s2.0-85019723419
Key words in English:
Autoassociative memory; Bidirectional Associative Memory (BAM); Heteroassociative memory; Hopfield Network
Annotation in original language:
The focus in this paper is on the proposal of guaranteed patterns in the training set for associative networks. All proposed patterns are pseudoortogonal and they also fulfil stability condition. Patterns were stored into the matrix using Hebb rules for associative networks. In the experimental study, we tested which from the heteroassociative Bidirectional Associative Memory (BAM) and autoassociative Hopfield network is more effective when working with the proposed patterns and what are the possibilities for Hopfield networks when working with real patterns. The comparison was made in order to recognize various damaged images using both types of associative networks. All obtained results are presented in tables or in graphs.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/17:A1801QXV
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules