OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Bivariate fuzzy transform based on tensor product of two polynomial spaces in analysis of correlation function
Citace
NGUYEN, L. T. N. L. a Holčapek, M. Bivariate fuzzy transform based on tensor product of two polynomial spaces in analysis of correlation function.
In:
The 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty: Proceeding of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty 2017-09-17 Pardubice.
Ostrava: University of Ostrava, 2017. s. 144-153. ISBN 978-80-7464-932-5.
Subtitle
Publication year:
2017
Obor:
Obecná matematika
Number of pages:
10
Page from:
144
Page to:
153
Form of publication:
Tištená verze
ISBN code:
978-80-7464-932-5
ISSN code:
Proceedings title:
Proceeding of the 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Proceedings:
Mezinárodní
Publisher name:
University of Ostrava
Place of publishing:
Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
The 20th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty
Místo konání konference:
Pardubice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000418391500017
EID:
Key words in English:
Fuzzy transform, tensor product space, functional approximation, correlation function
Annotation in original language:
This paper introduces a new type of fuzzy transformation of higher degree applied to bivariate complex-valued functions, which is based on the tensor product of two polynomial spaces. We demonstrate that the new type of fuzzy transform is efficient in the study of random processes, namely, in the analysis of correlation functions of random processes after the application of higher degree fuzzy transform.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/17:A1801QIJ
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules