OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Towards Visual Training Set Generation Framework
Citace
HŮLA, J., Perfiljeva, I. a Muzaheed, A. A. M. Towards Visual Training Set Generation Framework.
In:
IWANN 2017: Advances in Computational Intelligence 2017-06-14 Cadiz.
Cadiz: Springer Verlag, 2017. s. 747-758. ISBN 978-3-319-59146-9.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
12
Page from:
747
Page to:
758
Form of publication:
Tištená verze
ISBN code:
978-3-319-59146-9
ISSN code:
Proceedings title:
Advances in Computational Intelligence
Proceedings:
Mezinárodní
Publisher name:
Springer Verlag
Place of publishing:
Cadiz
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IWANN 2017
Místo konání konference:
Cadiz
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000443108700063
EID:
2-s2.0-85020909597
Key words in English:
deep learning, computer vision, synthetic data
Annotation in original language:
Performance of trained computer vision algorithms is largely dependent on amounts of data, on which it is trained. Creating large labeled datasets is very expensive, and therefore many researchers use synthetically generated images with automatic annotations. To this purpose we have created a general framework, which allows researchers to generate practically infinite amount of images from a set of 3D models, textures and material settings. We leverage Voxel Cone Tracing technology implemented by NVIDIA to render photorealistic images in realtime without any kind of precomputation. We have build this framework with two use cases in mind: (i) for real world applications, where a database with synthetically generated images could compensate for small or non existent datasets, and (ii) for empirical testing of theoretical ideas by creating training sets with known inner structure.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/17:A1901OX9
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules