OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Adaptive Differential Evolution vs. Nature-Inspired Algorithms: An Experimental Comparison
Citace
Bujok, P., Tvrdík, J. a Poláková, R. Adaptive Differential Evolution vs. Nature-Inspired Algorithms: An Experimental Comparison.
In:
2017 IEEE SSCI: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings 2017-11-27 Honolulu.
Piscataway, USA: IEEE, 2017. s. 2604-2611. ISBN 978-1-5386-2725-9.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
8
Page from:
2604
Page to:
2611
Form of publication:
Elektronická verze
ISBN code:
978-1-5386-2725-9
ISSN code:
Proceedings title:
2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings
Proceedings:
Publisher name:
IEEE
Place of publishing:
Piscataway, USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2017 IEEE SSCI
Místo konání konference:
Honolulu
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Optimization, differential evolution, nature-inspired algorithm, experimental comparison, CEC2011 benchmark set, CEC2014 benchmark set.
Annotation in original language:
Eight nature-inspired algorithms are compared with four advanced adaptive differential evolution (DE) variants andthe blind random search on two benchmark sets. One of the benchmark sets is CEC 2011 collection of 22 real-world optimization problems, the latter is the suite of 30 artifficial functions dened for the competition of the algorithms within CEC 2014.The results of experiments demonstrate the superiority of the adaptive DE variants both on the real-world problems and the artifficial CEC 2014 test suite at all the levels of dimension (10, 30, and 50). Some of the nature-inspired algorithms perform even worse than the blind random search. The results entitle to form a recommendation for practitioners - Do not propose a new original algorithm but select among the optimization algorithms supported by thorough research and good ranking in international competitions of optimization algorithms.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules