OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Adaptation of Population Size According to Current Population Diversity in Differential Evolution
Citace
Poláková, R., Tvrdík, J. a Bujok, P. Adaptation of Population Size According to Current Population Diversity in Differential Evolution.
In:
2017 IEEE Symposium Series on Computational Intelligence (SSCI): 2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings 2017-11-27 Honolulu.
Piscataway, USA: IEEE, 2017. s. 2627-2634. ISBN 978-1-5386-2725-9.
Subtitle
Publication year:
2017
Obor:
Number of pages:
8
Page from:
2627
Page to:
2634
Form of publication:
Elektronická verze
ISBN code:
978-1-5386-2725-9
ISSN code:
Proceedings title:
2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Piscataway, USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2017 IEEE Symposium Series on Computational Intelligence (SSCI)
Místo konání konference:
Honolulu
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Optimization, differential evolution, population diversity, experimental comparison, CEC2014 benchmark set.
Annotation in original language:
A new mechanism for the adaptation of population size in differential evolution (DE) is described and applied to CEC 2014 test suite. The adaptive mechanism is based on linear reduction of the population diversity and enables both decreasing and increasing the population size during the search. The efficiency of DE variants with and without this adaptive mechanism is compared. Moreover, this new mechanism is also compared with the linear reduction of population size used in L-SHADE and its successful successors. The results of the comparison demonstrate the benefit from the new adaptive mechanism to the algorithm efficiency in more than a half of test problems while the deterioration of efficiency occurs rarely.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/17:A1801ORO
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules