OU Portal
  • Log In
  • Welcome
  • Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
{}

Pomocí tohoto dialogu můžete vyhledat domácí autory, čili autory, kteří jsou vedeni v personálních systémech Ostravské univerzity.

Do našeptávače níže napište hledaný text a tento text bude vyhledán ve jméně nebo příjmení autora. Autoři, kteří budou hledanému textu odpovídat, Vám budou nabídnuti v seznamu. Pomocí myši nebo šipek na klávesnici vyberte požadovaného autora.

Našeptávač : 
Přidat autora k záznamu Zavřít

Pomocí tohoto dialogu můžete k záznamu přidat cizího autora, čili autora, který nemá žádný pracovní ani studijní vztah k Ostravské univerzitě. Takto přidaný autor bude do RIV vykázán jako nedomácí.

Pro přidání autora vepište jeho jméno a příjmení do určených položek.

Jméno :
Příjmení :
Přidat k záznamu Zavřít
Zavřít
Publikační činnost


preloading...   Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu * : prezentace (kongresy, sympózia, konference, workshopy)
Domácí pracoviště * : Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název * : Towards Visual Training Set Generation Framework
Citace : Perfiljeva, I. a HŮLA, J. Towards Visual Training Set Generation Framework. In: ISCAMI. Malenovice. 2017.
Podnázev :
Rok : 2017
Obor : Informatika
Místo konání : Malenovice
Stát konání akce :
Název akce : ISCAMI
Datum od :
Datum do :
Druh prezentace : Přednáška
Instituce :
Klíčová slova anglicky :
deep learning, computer vision
Popis v původním jazyce :
Performance of trained computer vision algorithms is largely dependent on amounts of data, on which it is trained. Creating large labeled datasets is very expensive, and therefore many researchers use synthetically generated images with automatic annotations. To this purpose we have created a general framework, which allows researchers to generate practically infinite amount of images from a set of 3D models, textures and material settings. We leverage Voxel Cone Tracing technology implemented by NVIDIA to render photorealistic images in realtime without any kind of precomputation. We have build this framework with two use cases in mind: (i) for real world applications, where a database with synthetically generated images could compensate for small or non existent datasets, and (ii) for empirical testing of theoretical ideas by creating training sets with known inner structure.
Popis v anglickém jazyce :
Typ zdroje financování výsledku : Specifický výzkum
Seznam projektů :
ID Projektu Název projektu
Seznam ohlasů : 
Ohlas
R01:

© 2019 Centre for Information Technology

  • Technická podpora :
  • Mgr. Olga Blahutová (phone: +420 597 091 129, phone flap for UO: 1129)
  • Ing. Lucie Svitaneková (phone: +420 597 091 108, phone flap for UO: 1108)
Complementary Content
  • ${title}${badge}
${loading}