OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Image contours detection with deep features and SVM
Citace
Molek, V. Image contours detection with deep features and SVM.
In:
The 10th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT): Advances in Fuzzy Logic and Technology 2017. Proc. EUSFLAT-2017 (Book series: Advances in Intelligent Systems and Computing) 2017-09-11 Warsaw.
Berlin: Springer Verlag, 2018. s. 546-553. ISBN 978-331966823-9.
Subtitle
Publication year:
2018
Obor:
Informatika
Number of pages:
8
Page from:
546
Page to:
553
Form of publication:
Tištená verze
ISBN code:
978-331966823-9
ISSN code:
2194-5357
Proceedings title:
Advances in Fuzzy Logic and Technology 2017. Proc. EUSFLAT-2017 (Book series: Advances in Intelligent Systems and Computing)
Proceedings:
Mezinárodní
Publisher name:
Springer Verlag
Place of publishing:
Berlin
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
The 10th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)
Místo konání konference:
Warsaw
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000432807900048
EID:
2-s2.0-85029438252
Key words in English:
SVM; features extraction; deep learning; convolutional neural network; image contours detection; classification;
Annotation in original language:
This contribution introduces the image contours detection based on the features extracted by a deep convolutional neural network. Popular pre-trained network VGG19 was used to extract 5504 different features for each input image pixel and then classified by a neural network with SVM classifier.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A1901NAY
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules