OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Convolutional Neural Networks with the F-transform Kernels
Citace
Molek, V. a Perfiljeva, I. Convolutional Neural Networks with the F-transform Kernels.
In:
IWANN 2017: Advances in Computational Intelligence 2017-06-14 Cadiz.
Cham: Springer, 2017. s. 396-407. ISBN 978-3-319-59152-0.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
12
Page from:
396
Page to:
407
Form of publication:
Tištená verze
ISBN code:
978-3-319-59152-0
ISSN code:
0302-9743
Proceedings title:
Advances in Computational Intelligence
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IWANN 2017
Místo konání konference:
Cadiz
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85020520591
Key words in English:
fuzzy transformation; convolutional neural network; kernels; convolution; features;
Annotation in original language:
We propose a new convolutional neural network ? the FTNetand explain its theoretical background referring to the theory of a higherdegree F-transform. The FTNet is parametrized by kernel sizes, on/offactivation of weights learning, the choice of strides or pooling, etc. It istrained on the database MNIST and tested on handwritten inputs. Theobtained results demonstrate that the FTNet has better recognition ac-curacy than the automatically trained LENET-5. We have also analyzedthe FTNet and LENET-5 rotation invariance.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/17:A1801N94
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules