OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Reduced IFAM Weight Matrix Representation using Sparse Matrices
Citace
Vajgl, M. Reduced IFAM Weight Matrix Representation using Sparse Matrices.
In:
EUSFLAT 2017: Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2017 and 16th International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, IWIFSGN 2017 2017-09-11 Warszawa.
Springer Verlag, 2018. s. 463-469. ISBN 978-331966826-0.
Subtitle
Publication year:
2018
Obor:
Obecná matematika
Number of pages:
7
Page from:
463
Page to:
469
Form of publication:
Tištená verze
ISBN code:
978-331966826-0
ISSN code:
2194-5357
Proceedings title:
Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2017 and 16th International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, IWIFSGN 2017
Proceedings:
Mezinárodní
Publisher name:
Springer Verlag
Place of publishing:
neuvedeno
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
EUSFLAT 2017
Místo konání konference:
Warszawa
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000431389900042
EID:
2-s2.0-85029415400
Key words in English:
IFAM, weight matrix, sparse matrix, implicative fuzzy associative memory
Annotation in original language:
The implicative fuzzy associative memories (IFAM) is a tool used to store patterns in a database and to recall desired pattern upon a presentation. The original IFAM model has been later updated to simplify the weight matrix construction. As a result of this improvement, model internally contains only significant values. This article describes how sparse matrix used to capture model's weight matrix can be used to reduce memory-space consumption.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/18:A1901N8R
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules