OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra matematiky (31100)
Title:
Is Differential Evolution Rotationally Invariant?
Citace
Zámečníková, H., Stuchlík, D. a Einšpiglová, D. Is Differential Evolution Rotationally Invariant?.
In:
ISCAMI2017, Proceedings of the 18th International Student Conference on Applied Mathematics and Informatics 2017-06-08 Malenovice.
Ostrava: University of Ostrava, 2017. s. 58-58. ISBN 978-80-7464-921-9.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
1
Page from:
58
Page to:
58
Form of publication:
Tištená verze
ISBN code:
978-80-7464-921-9
ISSN code:
Proceedings title:
ISCAMI2017, Proceedings of the 18th International Student Conference on Applied Mathematics and Informatics
Proceedings:
Publisher name:
University of Ostrava
Place of publishing:
Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
Místo konání konference:
Malenovice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Differential evolution, rotationally invariant, experimental comparison
Annotation in original language:
We study a problem of the control parameter settings in differential evolution algorithm. Although differential evolution with basic setting (i.e.CR=0.5; F=0.5) works quite well, it starts to fail on rotated functions. In general we want to improve the convergence of algorithm primarily on rotatedfunctions. It is done by adapting crossover parameter CR whereas parameter F is fixed to 0.5. There is a recommendation to set CR=1 forrotated functions. It means that trial vectors are essentially composed from mutant. We verify the fact by running the algorithm with mentioned setting on some pairs of rotated and non-rotated functions from CEC2013 benchmark set in various levels of dimension space. This experimental study aims to reveal if such algorithm setting is invariant under a rotation.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules