OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra matematiky (31100)
Title:
Diversity of population in differential evolution
Citace
Stuchlík, D., Einšpiglová, D. a Zámečníková, H. Diversity of population in differential evolution.
In:
ISCAMI2017, Proceedings of the 18th International Student Conference on Applied Mathematics and Informatics 2017-06-08 Malenovice.
Ostrava: University of Ostrava, 2017. s. 49-49. ISBN 978-80-7464-921-9.
Subtitle
Publication year:
2017
Obor:
Informatika
Number of pages:
1
Page from:
49
Page to:
49
Form of publication:
Tištená verze
ISBN code:
978-80-7464-921-9
ISSN code:
Proceedings title:
ISCAMI2017, Proceedings of the 18th International Student Conference on Applied Mathematics and Informatics
Proceedings:
Publisher name:
University of Ostrava
Place of publishing:
Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
Místo konání konference:
Malenovice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Differential evolution, diversity of population, adaptation of population size.
Annotation in original language:
Differential evolution (DE) has become one of the most used optimization techniques. DE is population-based algorithm with several control parameters. There are many adaptive DE variants working with mutation and crossover parameters proposed since the DE algorithm has been introduced. In this work, we study population-size adaptive mechanism proposed recently which is based on the population diversity. In this mechanism, the population size is increased by one (a newly randomly generated point is added) or decreased by one (the worst point is erased) dependently on actual diversity of population. This mechanism is investigated in the original version of DE algorithm by applying to benchmark set developed for CEC2013 competition.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules