OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Relational Compositions Based On Grouping Features
Citace
Cao, T. H. N., Štěpnička, M., Burda, M. a Dolný, A. Fuzzy Relational Compositions Based On Grouping Features.
In:
9th International Conference on Knowledge and Systems Engineering (KSE 2017): Proc. 9th International Conference on Knowledge and Systems Engineering (KSE 2017) 2017 Hue.
Hue: IEEE, 2017. s. 94-99. ISBN 978-1-5386-3576-6.
Subtitle
Publication year:
2017
Obor:
Obecná matematika
Number of pages:
6
Page from:
94
Page to:
99
Form of publication:
Tištená verze
ISBN code:
978-1-5386-3576-6
ISSN code:
2164-2508
Proceedings title:
Proc. 9th International Conference on Knowledge and Systems Engineering (KSE 2017)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Hue
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
9th International Conference on Knowledge and Systems Engineering (KSE 2017)
Místo konání konference:
Hue
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000417413000017
EID:
Key words in English:
Fuzzy relational compositions, Excluding features, Fuzzy quantifiers, Classification, Odonata
Annotation in original language:
Fuzzy relational compositions play a crucial role in fundamentals of fuzzy mathematics as well as in distinct application areas. Recent studies introduce distinct generalizations, e.g., incorporation ofexcluding features or the use of generalized quantifiers. No matter the huge positive potential of these approaches, we demonstrate on areal example, that some limitations even for these extensions may be encountered if the features are constructed in a certain specific yet very natural way and then, further improvement may be obtained,if a sort of grouping of features is applied. Then, working on the partitioned universe of features, the combination of both above mentioned extensions will be introduced and experimentally validated.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/17:A1801MY6
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules