OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Expert Systems as Efficient Tools of Lean Logistics
Citace
Farana, R., Formánek, I. a Walek, B. Expert Systems as Efficient Tools of Lean Logistics.
In:
International Scientific Conference ?Current Problems of the Corporate Sector 2016?: Proceedings of International Scientific Conference "Current Problems of the Corporate Sector 2016" 2016-05-05 Bratislava.
Bratislava: EKONÓM, 2016. EKONÓM, 2016. s. 211-218. ISBN 978-80-225-4245-6.
Subtitle
Publication year:
2016
Obor:
Informatika
Number of pages:
8
Page from:
211
Page to:
218
Form of publication:
Elektronická verze
ISBN code:
978-80-225-4245-6
ISSN code:
Proceedings title:
Proceedings of International Scientific Conference "Current Problems of the Corporate Sector 2016"
Proceedings:
Mezinárodní
Publisher name:
EKONÓM
Place of publishing:
Bratislava
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
International Scientific Conference ?Current Problems of the Corporate Sector 2016?
Místo konání konference:
Bratislava
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
Expert system, fuzzy logic, optimization, warehouse stock
Annotation in original language:
Currently, a lot of companies have tried to optimize their systems of warehouse stock management to minimize the production costs. The goal is clear ? not to spend too much money for stock. There are various information systems that help us to optimize processes like resources adjustment, resources planning, purchasing, deliveries, sales etc. The paper presents an expert system which uses a knowledge-base based on managers? knowledge and experience and other influences affecting the prediction in order to predict and propose the optimum quantity of necessary resources. Individual steps and parts of the expert system are described in the paper. The presented expert system was also verified in a practical application.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/16:A1701HLB
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules