OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Evaluating the Performance of L-SHADE with Competing Strategies on CEC2014 Single Parameter-operator Test Suite
Citace
Poláková, R., Tvrdík, J. a Bujok, P. Evaluating the Performance of L-SHADE with Competing Strategies on CEC2014 Single Parameter-operator Test Suite.
In:
WCCI 2016: CEC IEEE 2016 2016-07-24 Vancouver.
IEEE, 2016. s. 1181-1187. ISBN 9781509006229.
Subtitle
Publication year:
2016
Obor:
Informatika
Number of pages:
7
Page from:
1181
Page to:
1187
Form of publication:
Paměťový nosič
ISBN code:
9781509006229
ISSN code:
Proceedings title:
CEC IEEE 2016
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
WCCI 2016
Místo konání konference:
Vancouver
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
global optimization, differential evolution, adaptation, parameter setting
Annotation in original language:
A new variant of differential evolution algorithm is proposed. The new variant is a modification of the success-history based parameter adaptation of differential evolution using linear population size reduction (L-SHADE). In the newly proposed variant, adaptive mechanism of competing strategies is added. Four different strategies combining two kinds of mutation and two types of crossover compete in generating the new trial points and selection of the strategy to be used in the current step is based on the success in previous search steps. The proposed algorithm is applied to the benchmark set defined for Single parameter-operator set based case of Special Session and Competitions on Real-Parameter Single Objective Optimization on CEC2016. According to preliminary experiments, the proposed algorithm with competing strategies outperformed the original L-SHADE in most of the test problems.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/16:A1701GK9
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules