OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
L-SHADE with Competing Strategies Applied to CEC2015 Learning-based Test Suite
Citace
Poláková, R., Tvrdík, J. a Bujok, P. L-SHADE with Competing Strategies Applied to CEC2015 Learning-based Test Suite.
In:
WCCI 2016: CEC IEEE 2016 2016-07-24 Vancouver.
IEEE, 2016. s. 4790-4796. ISBN 9781509006229.
Subtitle
Publication year:
2016
Obor:
Informatika
Number of pages:
7
Page from:
4790
Page to:
4796
Form of publication:
Paměťový nosič
ISBN code:
9781509006229
ISSN code:
Proceedings title:
CEC IEEE 2016
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
WCCI 2016
Conference venue:
Vancouver
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
global optimization, differential evolution, adaptation, parameter settings, optimization competition
Annotation in original language:
Successful adaptive variant of differential evolution, the Success-history based parameter adaptation of Differential Evolution using linear population size reduction algorithm (L-SHADE), was improved. Adaptive mechanisms used in the algorithm were joined with adaptive mechanism proposed for competitive differential evolution algorithm. Four strategies, including the original one and strategies with exponential crossover, compete in the new LSHADE44 algorithm.The proposed algorithm is applied to the benchmark set defined for Learning-based case of Special Session and Competitions on Real-Parameter Single Objective Optimization on CEC2016. According to preliminary experiments, the proposed algorithm with competing strategies outperformed the original L-SHADE in the most of the test problems.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/16:A1701GK8
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules