OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Linguistic Descriptions As a Modeling Tool For Multivariate Time Series
Citace
Rusnok, P. Linguistic Descriptions As a Modeling Tool For Multivariate Time Series.
In:
IFSA-EUSFLAT 2015: Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology 2015-06-30 Gijon, Španělsko.
Atlantis Press, 2015. s. 981-986. ISBN 978-94-62520-77-6.
Subtitle
Publication year:
2015
Obor:
Obecná matematika
Number of pages:
6
Page from:
981
Page to:
986
Form of publication:
Elektronická verze
ISBN code:
978-94-62520-77-6
ISSN code:
1951-6851
Proceedings title:
Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology
Proceedings:
Mezinárodní
Publisher name:
Atlantis Press
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IFSA-EUSFLAT 2015
Místo konání konference:
Gijon, Španělsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
multivariate time series, evaluative linguistic expressions, association analysis, Perception based Logic Deduction
Annotation in original language:
We propose linguistic associations mining as a technique to create the models of the multivariate time series. We define various linguistic evaluative expressions on the range of the values of the time series and variables derived from them. We mine linguistic associations then and interpret them as IF-THEN rules in the framework of Perception based Logic Deduction (PbLD). The mined rules provide the linguistic descriptions of various relationships between the time series. We showcase our suggested methodology in a macroeconomic example where we compare our approach with Dynamic Stochastic General Equilibrium (DSGE) model, that is frequently used in the macroeconomic modeling.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/15:A1601E6Z
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules