OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Machine Learning Approach to Point Localization System
Citace
Žáček, J. a Janošek, M. Machine Learning Approach to Point Localization System.
In:
SAMI 2015 - IEEE 13th International Symposium on Applied Machine Intelligence and Informatics: IEEE 13th International Symposium on Applied Machine Intelligence and Informatics 2015-01-22 Slovakia, Herľany.
New York: IEEE, 2015. s. 313-317. ISBN 978-1-4799-8221-9.
Podnázev
Rok vydání:
2015
Obor:
Informatika
Počet stran:
5
Strana od:
313
Strana do:
317
Forma vydání:
Tištená verze
Kód ISBN:
978-1-4799-8221-9
Kód ISSN:
Název sborníku:
IEEE 13th International Symposium on Applied Machine Intelligence and Informatics
Sborník:
Mezinárodní
Název nakladatele:
IEEE
Místo vydání:
New York
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
SAMI 2015 - IEEE 13th International Symposium on Applied Machine Intelligence and Informatics
Místo konání konference:
Slovakia, Herľany
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
000380524900051
EID:
2-s2.0-84926433849
Klíčová slova anglicky:
acoustic motion capturing system;machine learning approach;neural networks;point localization system;acoustic signal processing;fuzzy neural nets;learning (artificial intelligence);ANFIS approach
Popis v původním jazyce:
The article introduces point localization systems in 3D Euclidean space based on neural networks. There are two models presented. The first one identified distances between a randomly generated point and a reference points in the defined domain. Then a neural network uses the obtained distances as its inputs to determine the actual position of the point in the domain space. Due to a relatively good accuracy that was obtained during the experimental study, the proposed model based on neural networks was used in the second model as an acoustic Motion Capturing system (MoCap). MoCap system is represented by a neural network that uses obtained distances between transmitters and a receiver as its inputs to determine an actual position of the receiver in space. We also propose a new way to minimize a training set by using ANFIS approach in this specific problem. All obtained results are summarized in the conclusion.
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/15:A1701E61
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules