OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Machine Learning Approach to Point Localization System
Citace
Žáček, J. a Janošek, M. Machine Learning Approach to Point Localization System.
In:
SAMI 2015 - IEEE 13th International Symposium on Applied Machine Intelligence and Informatics: IEEE 13th International Symposium on Applied Machine Intelligence and Informatics 2015-01-22 Slovakia, Herľany.
New York: IEEE, 2015. s. 313-317. ISBN 978-1-4799-8221-9.
Subtitle
Publication year:
2015
Obor:
Informatika
Number of pages:
5
Page from:
313
Page to:
317
Form of publication:
Tištená verze
ISBN code:
978-1-4799-8221-9
ISSN code:
Proceedings title:
IEEE 13th International Symposium on Applied Machine Intelligence and Informatics
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
New York
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
SAMI 2015 - IEEE 13th International Symposium on Applied Machine Intelligence and Informatics
Místo konání konference:
Slovakia, Herľany
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000380524900051
EID:
2-s2.0-84926433849
Key words in English:
acoustic motion capturing system;machine learning approach;neural networks;point localization system;acoustic signal processing;fuzzy neural nets;learning (artificial intelligence);ANFIS approach
Annotation in original language:
The article introduces point localization systems in 3D Euclidean space based on neural networks. There are two models presented. The first one identified distances between a randomly generated point and a reference points in the defined domain. Then a neural network uses the obtained distances as its inputs to determine the actual position of the point in the domain space. Due to a relatively good accuracy that was obtained during the experimental study, the proposed model based on neural networks was used in the second model as an acoustic Motion Capturing system (MoCap). MoCap system is represented by a neural network that uses obtained distances between transmitters and a receiver as its inputs to determine an actual position of the receiver in space. We also propose a new way to minimize a training set by using ANFIS approach in this specific problem. All obtained results are summarized in the conclusion.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/15:A1701E61
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules