OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Hierarchical Topology in Parallel Differential Evolution
Citace
Bujok, P. Hierarchical Topology in Parallel Differential Evolution.
In:
Lecture Notes in Computer Science 8962.
Berlin Heidelberg: Springer-Verlag, 2015. Springer-Verlag, 2015. s. 62-69. ISBN 978-3-319-15584-5.
Subtitle
Publication year:
2015
Obor:
Informatika
Number of pages:
8
Page from:
62
Page to:
69
Form of publication:
Tištená verze
ISBN code:
978-3-319-15584-5
ISSN code:
0302-9743
Proceedings title:
Lecture Notes in Computer Science 8962
Proceedings:
Mezinárodní
Publisher name:
Springer-Verlag
Place of publishing:
Berlin Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Numerical Methods and Applications, MNA 2014
Místo konání konference:
Borovets, Bulgaria
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Differential evolution; parallel model; hierarchical topology; CEC2013 benchmark suite
Annotation in original language:
A new differential evolution (DE) algorithm with a parallel hierarchical topology (HDE) is proposed. The main goal of the paper is to study how the performance of the algorithm is influenced by the use of parallel migration model. The hierarchical model has several control parameters and the influence of these parameters setting is also studied. The performance of HDE algorithm is compared with non-parallel DE algorithm on CEC2013 benchmark suite. Experimental results show that the HDE outperforms the non-parallel DE algorithm significantly in 27 out of 28 test problems.
Annotation in english language:
The problem of optimal partitioning by minimizing pooled-within-variance of groups is addressed. Three state-of-the-art adaptive differential evolution algorithms are compared on four real-world data sets. A~novel hybrid differential evolution algorithm, including k-means algorithm for local search is proposed. The experimental comparison is done with either the plain adaptive differential evolution variants or the hybrid algorithms. Experimental results showed that hybrid algorithms are substantially better preforming when compared with plain differential evolution variants. Among hybrid variants, the competitive differential evolution appeared to be the most efficient.
References
Reference
R01:
RIV/61988987:17310/15:A1501E3S
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules