OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Cooperation of Optimization Algorithms: A Simple Hierarchical Model
Citace
Poláková, R., Tvrdík, J. a Bujok, P. Cooperation of Optimization Algorithms: A Simple Hierarchical Model.
In:
CEC2015: 2015 IEEE Congress on Evolutionary Computation (CEC) 2015-05-25 Sendai, Japonsko.
Institute of Electrical and Electronics Engineers Inc., 2015. s. 1046-1052. ISBN 978-1-4799-7492-4.
Subtitle
Publication year:
2015
Obor:
Informatika
Number of pages:
7
Page from:
1046
Page to:
1052
Form of publication:
Tištená verze
ISBN code:
978-1-4799-7492-4
ISSN code:
Proceedings title:
2015 IEEE Congress on Evolutionary Computation (CEC)
Proceedings:
Mezinárodní
Publisher name:
Institute of Electrical and Electronics Engineers Inc.
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
CEC2015
Místo konání konference:
Sendai, Japonsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
global optimization, cooperation of algorithms, experimental tests
Annotation in original language:
A simple model for the cooperation of optimization evolutionary algorithms was proposed and tested on CEC 2015 benchmark suite. The four adaptive algorithms were chosen for this model, namely covariance matrix adaptation evolutionary strategy (CMA-ES) and three variants of adaptive differential evolution. Three algorithms with constant population size work in pseudo-parallel way and after stopping the whole populations migrate to the top algorithm with dynamic population reduction for final processing. The simple cooperative algorithm outperformed CMA-ES in 24 out of 60 test problems, which is promising for the development of more sophisticated cooperative algorithms for the global optimization.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/15:A1601DML
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules