OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Parallel Mining of Fuzzy Association Rules on Dense Data Sets
Citace
Burda, M., Pavliska, V. a Valášek, R. Parallel Mining of Fuzzy Association Rules on Dense Data Sets.
In:
IEEE International Conference on Fuzzy Systems.
Beijing, China: IEEE, 2014. IEEE, 2014. s. 2156-2162. ISBN 978-1-4799-2072-3.
Subtitle
Publication year:
2014
Obor:
Informatika
Number of pages:
7
Page from:
2156
Page to:
2162
Form of publication:
Tištená verze
ISBN code:
978-1-4799-2072-3
ISSN code:
1098-7584
Proceedings title:
IEEE International Conference on Fuzzy Systems
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Beijing, China
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE International Conference on Fuzzy Systems
Místo konání konference:
Beijing, China
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
fuzzy association rules opus algorithm parallelization
Annotation in original language:
The aim of this paper is to present a scalable parallel algorithm for fuzzy association rules mining that is suitable for dense data sets. Unlike most of other approaches, we have based the algorithm on the Webb's OPUS search algorithm. Having adopted the master/slave architecture, we propose a simple recursion threshold technique to allow load-balancing for high scalability.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/14:A1501BDK
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules