OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Steganography based on neural networks
Citace
Jarušek, R., Volná, E. a Kotyrba, M. Steganography based on neural networks: a preliminary study.
In:
Proceedings of the 20th International Conference on Soft Computing, Mendel 2014.
Brno: University of Technilogy, 2014. University of Technilogy, 2014. s. 223-228. ISBN 978-80-214-4984-8.
Subtitle
a preliminary study
Publication year:
2014
Obor:
Informatika
Number of pages:
6
Page from:
223
Page to:
228
Form of publication:
Tištená verze
ISBN code:
978-80-214-4984-8
ISSN code:
1803-3814
Proceedings title:
Proceedings of the 20th International Conference on Soft Computing, Mendel 2014
Proceedings:
Mezinárodní
Publisher name:
University of Technilogy
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
International Conference on Soft Computing, Mendel 2014
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Backpropagation neural networks, steganography, steganalysis, Blum Blum Shub generator.
Annotation in original language:
: In the paper, we present an approach for identifying the stego-key in key-dependent steganographic schemes. The proposed approach is based on backpropagation neural networks and deals with the image histogram modifications associated with weight configurations of adapted neural networks. The image histogram is the type of histogram acting as a graphical representation of the tonal distribution in a digital image. The stego images that are produced by using such data hiding techniques are inherently robust against main geometrical attacks. The essential part of this article aims to verify the proposed approach in an experimental study. Further, contemporary method of application and results are presented in this paper as an example.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/14:A1501BBG
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules