OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Time Series Trend Extraction and Its Linguistic Evaluation Using F-Transform and Fuzzy Natural Logic
Citace
Novák, V., Pavliska, V., Štěpnička, M. a Štěpničková, L. Time Series Trend Extraction and Its Linguistic Evaluation Using F-Transform and Fuzzy Natural Logic.
In:
Recent Developments and New Directions in Soft Computing (Studies in Fuzziness and Soft Computing 317).
Switzerland: Springer, 2014. Springer, 2014. s. 429-442. ISBN 978-3-319-06322-5.
Subtitle
Publication year:
2014
Obor:
Obecná matematika
Number of pages:
14
Page from:
429
Page to:
442
Form of publication:
Tištená verze
ISBN code:
978-3-319-06322-5
ISSN code:
Proceedings title:
Recent Developments and New Directions in Soft Computing (Studies in Fuzziness and Soft Computing 317)
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2nd World congress on soft computing
Conference venue:
Baku
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy transform; F-transform; evaluative linguistic expressions; fuzzy natural logic
Annotation in original language:
This paper continues development of the innovative method of time series analysis and forecasting using special soft-computing techniques: fuzzy transform and Fuzzy Natural Logic. We will demonstrate that the F-transform is a proper technique for extraction of the trend-cycle of time series. Furthermore, we will elaborate in more detail automatic generation of linguistic evaluation of its behavior in changing time slots. Thanks to the first-degree F-transform (F$^1$-transform), this works even if the graph of the time series visually does not suggest a clear tendency.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/14:A1501B9M
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules