OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Rule-Based Ensemble for Time Series Prediction: The Application of Linguistic Associations Mining
Citace
Štěpnička, M., Štěpničková, L. a Burda, M. Fuzzy Rule-Based Ensemble for Time Series Prediction: The Application of Linguistic Associations Mining.
In:
IEEE International Conference on Fuzzy Systems.
Beijing, China: IEEE, 2014. IEEE, 2014. s. 505-512. ISBN 978-1-4799-2072-3.
Subtitle
Publication year:
2014
Obor:
Obecná matematika
Number of pages:
8
Page from:
505
Page to:
512
Form of publication:
Tištená verze
ISBN code:
978-1-4799-2072-3
ISSN code:
1098-7584
Proceedings title:
IEEE International Conference on Fuzzy Systems
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Beijing, China
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE International Conference on Fuzzy Systems
Místo konání konference:
Beijing, China
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
time series ensemble fuzzy association rules
Annotation in original language:
As there are many various methods for time series prediction developed but none of them generally outperforms all the others, there always exists a danger of choosing a method that is inappropriate for a given time series. To overcome such a problem, distinct ensemble techniques, that combine more individual forecasts, are being proposed. In this contribution, we employ the so called fuzzy rule-based ensemble. This method is constructed as a linear combination of a small number of forecasting methods where the weights of the combination are determined by fuzzy rule bases based on time series features such as trend, seasonality, or stationarity. For identification of fuzzy rule base, we use linguistic association mining. An exhaustive experimental justification is provided.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/14:A1501B26
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules