OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Přírodovědecká fakulta (31000)
Title:
Historical image processing using neural networks
Citace
Volná, E., Jarušek, R. a Kotyrba, M. Historical image processing using neural networks.
In:
Advanced Materials and Information Technology Processing.
UK: WITPRESS, 2013. WITPRESS, 2013. s. 698-704. ISBN 978-1-84564-853-4.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
8
Page from:
698
Page to:
704
Form of publication:
Tištená verze
ISBN code:
978-1-84564-853-4
ISSN code:
1746-4471
Proceedings title:
Advanced Materials and Information Technology Processing
Proceedings:
Mezinárodní
Publisher name:
WITPRESS
Place of publishing:
UK
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
3rd International Conference on Advanced Materials and Information Technology Processing
Conference venue:
Los Angeles
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
platinotype, cyanotype, Van Dyke, neural networks
Annotation in original language:
The aim of the article is imitation of handmade original techniques used for platinotype, cyanotype, and Van Dyke via digital filters based on artificial neural networks. The proposed methodology of editing information in graphical data, which aims to create a faithful copy of the manual process of alternative photo-graphic techniques, uses backpropagation neural networks, and contributes to the resulting graphics on the basis of defined transformation matrixes. The core of the proposed methodology is the composition of the results generated by individual neural networks with their configurations after adaptation over the proposed training set. An essential part of this article is to verify the proposed methodology in an experimental study.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/13:A1401AH9
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules