OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Construction of weak homogeneity from interval homogeneity. Application to image segmentation
Citace
Jurio, A., Paternain, D., Mesiar, R., Kolesárová, A. a Bustince, H. Construction of weak homogeneity from interval homogeneity. Application to image segmentation.
In:
DOI: 10.1109/FUZZ-IEEE.2013.6622336.
Hyderabad: IEEE, 2013. IEEE, 2013. s. 1-8. ISBN 978-147990022-0.
Subtitle
Publication year:
2013
Obor:
Obecná matematika
Number of pages:
8
Page from:
1
Page to:
8
Form of publication:
Tištená verze
ISBN code:
978-147990022-0
ISSN code:
1098-7584
Proceedings title:
DOI: 10.1109/FUZZ-IEEE.2013.6622336
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Hyderabad
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
FUZZ IEEE 2013
Místo konání konference:
Hyderabad
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Homogeneity; fuzzy sets; image segmentation
Annotation in original language:
In this paper we axiomatically define weak homo- geneity of a fuzzy subset, which means that its membership function fulfills at least the minimum properties required to represent the homogeneity of a region. We also provide several construction methods based on the homogeneity of an interval. Besides, we show an illustrative example of
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/13:A140192S
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules