OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Digital filters based on neural networks
Citace
Volná, E., Kotyrba, M. a Jarušek, R. Digital filters based on neural networks.
In:
Mendel 2013.
Brno: Brno Univerzity of Technology, 2013. Brno Univerzity of Technology, 2013. s. 197-202. ISBN 978-80-214-4755-4.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
6
Page from:
197
Page to:
202
Form of publication:
Tištená verze
ISBN code:
978-80-214-4755-4
ISSN code:
1803-3814
Proceedings title:
Mendel 2013
Proceedings:
Mezinárodní
Publisher name:
Brno Univerzity of Technology
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
19th International Conference on Soft computing Mendel 2013
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Artificial neural networks, platinotype, cyanotype, and Van Dyke technique
Annotation in original language:
The aim of the work is imitation of handmade original techniques used for platinotype, cyanotype, and Van Dyke via digital filters based on artificial neural networks. The proposed methodology of editing information in graphical data, which aims to create a faithful copy of the manual process of alternative photographic techniques, uses backpropagation neural networks and contributes to the resulting graphics on the basis of defined transformation matrixes. The core of the proposed methodology is the composition of the results generated by individual neural networks with their configurations after adaptation over the proposed training set. An essential part of this article is to verify the proposed methodology in an experimental study.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/13:A14017Z4
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules