OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
An Image Recognition Approach to Classification of Jewelry Stone Defects
Citace
Hurtík, P., Perfiljeva, I. a Burda, M. An Image Recognition Approach to Classification of Jewelry Stone Defects.
In:
Proceedings of the 2013 Joint IFSA World Congress NAFIPS Annual Meeting (IFSA/NAFIPS).
IEEE, 2013. s. 727-732. ISBN 978-1-4799-0347-4.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
6
Page from:
727
Page to:
732
Form of publication:
Elektronická verze
ISBN code:
978-1-4799-0347-4
ISSN code:
Proceedings title:
Proceedings of the 2013 Joint IFSA World Congress NAFIPS Annual Meeting (IFSA/NAFIPS)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IFSA World Congress
Conference venue:
Edmonton
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
image classification, image recognize, machine learning
Annotation in original language:
This article is focused on automatic recognition of jewelery stones quality. An image recognition method is described. Relevant image characteristics are computed, which are then used to classify the stone quality. Classification is performed by an algorithm based on binary decision trees with the decision thresholds adapted from a training dataset. At the end, the time complexity as well as accuracy of the proposed algorithm is compared with more than twenty state-of-the-art machine learning algorithms and the results are discussed.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/13:A14017TV
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules